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In this paper a further study is made of the spontaneous synaptic potentials
in frog muscle (Fatt & Katz, 1952a), and their relation to the end-plate
response. It has been suggested that the end-plate potential (e.p.p.) at a single
nerve-muscle junction is built up statistically of small all-or-none units which
are identical in size with the spontaneous 'miniature e.p.p.'s'. The latter,
therefore, could be regarded as the least unit, or the 'quantum', of end-plate
response. A convenient picture of how hundreds of such quanta, each capable
of producing a miniature potential of 0 5-1 0 mV, can build up an e.p.p. of,
say, 70-80 mV is provided by the hypothesis that separate parcels of acetyl-
choline (ACh), released from discrete spots of the nerve endings, short-circuit
the muscle membrane. The unit changes of membrane conductance produced
at many parallel spots summate and lead to an intense depolarization of the
muscle fibre.
Although this is a plausible view, there is no direct proof that the normal

e.p.p. is made up in this quantal fashion. The evidence comes from experi-
ments in which the 'quantum content' of the e.p.p. had been reduced to a
small number by lowering the external calcium concentration (Fatt & Katz,
1952 a). It was then found that the size of the end-plate response approached
that of the spontaneous potential and at the same time exhibited large random
fluctuations, apparently involving steps of unit size. Similar observations were
made by Castillo & Engbaek (1954) on muscles treated with Mg-rich solutions.
The statistical behaviour of the end-plate response under these conditions has
been investigated in more detail and subjected to a quantitative analysis.

METHODS
The technique for intracellular recording of e.p.p.'s and miniature potentials has been described
in earlier papers (Fatt & Katz, 1951, 1952a; Castillo & Katz, 1954). The m. ext. 1. dig. IV of
English frogs was used, immersed in an isotonic solution containing concentrations of CaCi2 and
MgCI2 adjusted so as to reduce the response to any desired level. In most experiments prostigmine
(10-6, w/v) was added to increase the amplitude ofthe potentials (without altering their 'quantum
content'). The usual procedure was to locate a suitable spot with the internal electrode and record
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spontaneous potentials on moving ifim. Then, a large number of end-plate responses to single or
pairs of nerve volleys were recorded, using a swept time-base and one or a few seconds interval
between records. Finally, another series of spontaneous potentials was recorded before the micro-
electrode was withdrawn from the fibre.
The amplitudes of the potentials were measured and their distribution displayed in a histogram.

With low Ca and high Mg concentrations, all-or-none fluctuations are observed in successive
records, with frequent total failures of e.p.p. response. Special importance was attached to the
counting of 'failures' and 'successes', as their proportions provided a simple and decisive test of
our hypothesis. A precaution which had to be taken was to guard against intermittent failures of
response due to other causes, e.g. inadequate stimulation or nerve damage leading to block. The
first source of trouble was avoided by using a strong shock, the second source could be recognized
without much difficulty, because nerve block, if it occurred at all, developed in a rapidly pro-
gressive manner and was unrelated to the size of the initial end-plate response.

In several muscle fibres there was evidence of a remote, second, motor nerve supply (cf. Katz &
Kuffler, 1941) producing small and slow miniature potentials and e.p.p. response. These were of
discrete shape and could be discarded without ambiguity, when counting responses and measuring
amplitudes.
The ext. 1. dig. IV contains some muscle fibres of the 'slow system' supplied by small motor

axons (Kuffler & Vaughan Williams, 1953; Katz, 1949). As most experiments were made below
the level of propagated spikes, the question arises whether we may not sometimes have been
recording from 'slow' muscle fibres. This is unlikely because the characteristics of the response
were those of the e.p.p.'s of 'twitch fibres' (sharp localization and low threshold whenever tested,
high resting potential, short latency, monophasic e.p.p. response). Spontaneous discharge of
miniature potentials had previously been shown to occur at end-plates of ordinary 'twitch fibres'
(Fatt & Katz, 1952a).

RESULTS

When a muscle was soaked in a solution containing approximately 10 mm-
MgCl2, transmission became blocked and subthreshold e.p.p.'s could be
recorded at individual junctions. A characteristic feature of these responses
was their random fluctuation in successive records. This is illustrated in Fig. 1
where twelve responses, together with some spontaneous miniature potentials,
are shown. If the response was further reduced, by increasing Mg or lowering
Ca concentrations, the amplitude fluctuations became even more ronounced
and were found to be of discontinuous character. In the experiment of Fig. 2,
for instance, the majority of records showed no response at all. On the average
only about one out of seven nerve impulses elicited an e.p.p. whose size was of
the same order of magnitude as the spontaneous potentials.

This behaviour is characteristic of block by high Mg and low Ca, and very
different from curare-block. With increasing doses of curarine the e.p.p., at
individual junctions, is progressively reduced in size and may eventually
become undetectable, but we have never found the response to be abolished,
or to fluctuate, in the quantal manner shown in Fig. 2.

If one proceeds to add Mg or withdraw Ca, a practical limit is reached when
the e.p.p. response becomes too infrequent to be distinguished from a spon-
taneous discharge. There are no differences in amplitude which would enable
one to discriminate between the two forms of activity; the distinction
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depends entirely on the constant latency of the response and random timing
of the spontaneous discharges. In a normal frog muscle, at 200 C, the latency
of the e.p.p. varies only within a fraction of a millisecond, but in the present
experiments we have accepted 1-2 msec as the maximum latency fluctuation,
and disallowed as 'response' any potentials which arose outside these limits.
In practice, unless the frequency of spontaneous firing was high and the

Fig. 1. Fluctuation of e.p.p. response at a single nerve-muscle junction, treated with 10 mM-Mg
(Ca concentration was normal: 1-8 mM; prostigmine 10-6). Intracellular recording. In each
record, three superimposed responses are seen. Note scattered spontaneous miniature
potentials.

frequency of responding very low, there was little chance of confusing a spon-
taneous potential with an e.p.p.-response: for example, in Fig. 2 (latency of
five 'accepted responses' being constant within 1 msec; spontaneous firing
rate 2-2 per sec) the chances of one of the 'accepted responses' being 'spon-
taneous' are about 5 %, and the chances of more than one arising spontaneously
are quite negligible.

Most experiments were made at an intermediate level of blocking when the
proportion of failures at individual end-plates was of the order of 50%. The
remaining responses were scattered in amplitude over a wide range, as illus-
trated in Fig. 3. (Responses to pairs of nerve impulses are shown in this
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figure.) Many e.p.p.'s fall evidently within the range of sizes of the spontaneous
potentials. Others are larger and probably represent multiple units of response.
It is interesting that the large e.p.p.'s occasionally show a just noticeable
inflexion on their rising phase (e.g. Fig. 3, record CG) indicative of their com-
posite nature and of imperfect synchronization of the contributing units.

Fig. 2. This muscle was treated with reduced Ca (0-9 mm) and 14 mM-Mg concentration. The top
part shows a few spontaneous potentials (traces separated by 1 mV steps). The lower part
(below the 50 c/s time signal) shows responses to single nerve impulses. Stimulus artifact
and response latency are indicated by a pair of dotted vertical lines. The proportion of
failures was very high: there are only five responses to twenty-four impulses.

The experiments of Figs. 1-3, made at different levels of neuromuscular
block, have one feature in common, namely a wide fluctuation in e.p.p.
amplitudes. In Figs. 4 and 5, the distribution of amplitudes in two experi-
ments is shown, both of spontaneous potentials and response. It is clear that
these results cannot be analysed, nor even satisfactorily described, without
a statistical treatment.
Suppose we have, at each nerve-muscle junction, a population of n units

(cf. Fatt & Katz, 1952a, 1953) capable of responding to a nerve impulse.
Suppose, further, that the average probability of responding is (the chancesp

36-2
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may differ greatly for the individual constituents, but are supposed to remain
constant during the experiment) then the mean number of units responding to
one impulse is m-=njp. Under normal conditions, may be assumed to be
relatively large, that is a fairly large part of the synaptic population responds
to an impulse. However, as we reduce the Ca and increase the Mg concen-
tration, the chances of responding are diminished and we observe mostly

Fig. 3. Muscle was treated with a solution containing 0 45 mM-Ca and 6 mM-Mg. Intracellular
recording from single junction. A and B: spontaneous miniature e.p.p.'s. C: examples of
responses to paired nerve impulses. Timing of stimuli N1 and N2 is indicated by arrows.
Failure of response to N1 in C4 and C., failure to N2 in C5 and C7, double failure in C(.
50 c/s time signal applies to B and C. A was recorded on slow time base and shows two
calibration steps of 1 mV.

complete failures with an occasional response of one or two units. Under these
conditions, when p is very small, the number of units x which make up the
e.p.p. in a large series of observations should be distributed in the charac-
teristic manner described by Poisson's law (their relative frequencies being
given by exp (-in) mlxx!).
To test the applicability of Poisson's law may seem difficult, because all we

can do is measure amplitudes of supposedly composite e.p.p.'s; we cannot
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count the components directly. The task is, however, made easier because the
presence of spontaneous activity gives us an independent measure of unit size.
We can obtain the value of m, i.e. the mean number of units responding to

one impulse, in two ways: first, from the relation
mean amplitude of e.p.p. response (1)

mean amplitude of spontaneous potentials(
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Figs. 4 and 5. Histograms from two end-plates, showing distribution of amplitudes of spontaneous
miniature potentials and of the responses to pairs of nerve impulses (7 msec interval between
N1 and N2). Failuree are not represented as a 'class', but their number is indicated by the
height of the shaded columns.

Equation (1) is a simple re-statement of our hypothesis, namely that the
e.p.p. is made up of units of the same size (though not necessarily composed of
the same individuals) as the spontaneous miniature potentials. Equation (1)
depends on the assumption that there is linear summation of the miniature
components of the e.p.p.: this is justified provided the amplitude of the e.p.p.
is only a few per cent of the resting potential (cf. Fatt & Katz, 1951), but
equation (1) fails to apply to larger responses.

Secondly, we can use the first term of the Poisson series (exp (-m), for
x =0) which gives the proportion of failures. Hence

Mn = log, number of nerve impulses (2)
number of failures of e.p.p. response'

Combining (1) and (2) we obtain
mean amplitude of response -1log number of impulses

mean amplitude of spontaneous potentials e number of e.p.p. failures

(3)
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Equation (3) provides a useful test of our hypothesis and depends only on

measurements of mean amplitudes and counting of 'failure' and 'success' of
e.p.p. response. The results of several experiments in which this test has been
applied are shown in Table 1 and Fig. 6. The agreement between the two
TABLE 1. In the last two columns the validity of equation (3) is tested in ten experiments. They

include four experiments irk which responses to pairs of impulses have been utilized (N1-N,
intervals 3*5-11 msec). It will be seen that the value of m (i.e. A/B or log. CID) is larger for
Ns than for N1, an effect which is discussed in the following paper.

Date
2. vi. 51

23. i. 53, A

23. i. 53, B

28. i. 53

4. ii. 53

24. ii. 53

2!

a

N,
N,
N1
N8
N1
N,
N1
N8

Mean
response
(mV)
(A)
0495
0-3341
0-588 J
0358}
0-5281r
0-727 t
1-14J
0 4951
0905 |
0-089

Mean spont.
potential

(mV)
(B)

0-875

0-46

0-305

0-72

0-335

0-565

No. of
impulses

(C)
328

289

280

357

319

118

No. of
failures

(D)
188
113

{ 76
I 89
i 56
138

1 78
{ 84
l 27

99

A/B
0B57
0-73
1-28
1*17
1-73
1*01
1-58
1-48
2-7
0-16

lo& C/D
0-56
0'94
1-33
1*15
1*61
0.95
1-52
1*33
2-47
0-18

0

u 1 2 3
- A/B

Fig. 6. The results of ten experiments summarized in Table 1 have been plotted, showing the
consistency of the two methods of determining the value of m (equations (1) and (2)).
Ordinate: log, number of impulses .Absciss mean e.p.p. response

number of e.p.p. failures a mean amplitude ofspontaneous potentials
The line corresponds to equality of these two estimates of m.
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determinations of m, corresponding to the right and left sides of equation (3),
is very satisfactory and may be regarded as a strong support of our initial
hypothesis.

Spontaneous potentials

Response

Fig. 7. Histogram showing distribution of amplitudes of spontaneous miniature potentials and
end-plate responses at a Ca-deficient junction (experiment of Fatt & Katz, 1952a, pp. 119-
120). In the lower part, the continuous curve has been calculated on the hypothesis that the
responses are built up statistically of units whose mean size and amplitude distribution are
identical with those of the spontaneous potentials (see text). Expected number of failures
shown by arrows. Abscissae: scale units =mean amplitude of spontaneous potentials
(0-875 mV).

The experiment of Fig. 7, the results of which were reported by Fatt & Katz
(1952 a), has been analysed more fully. The value of m was first determined by
equation (1), and the expected numbers of the Poisson series were calculated.
For x=0 (failure of response), there was excellent agreement between calcu-
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lated and observed values, but for the terms x > 0 account had to be taken of
the scatter of amplitudes of the 'unitary' spontaneous potentials. This was
done by (a) fitting a Gaussian curve to the spontaneous potentials, and (b) using
x times the mean and variance of this curve in distributing the Poisson classes.
The resulting theoretical distribution of e.p.p. amplitudes is shown by the
continuous curve in the lower part of Fig. 7. Although the fit with the
observed histogram is not accurate, the general agreement is good considering
that except for a single scaling factor (the total number of e.p.p.'s) the

10 _

C 100

Cu_
0u 0-1

0-1 10 10 100
m

Fig. 8. Relation between coefficient of variation and mean amplitude of e.p.p. in twenty-one
experiments. Logarithmic scales. Abscissa: mean e.p.p., divided by mean spontaneous
potential (i.e. nominal value of in). Ordinate: standard deviation of e.p.p., divided by mean
(i.e. 'coefficient of variation' of e.p.p.). E.p.p. amplitudes had been grouped for this purpose
in 'unit classes' (i.e. with class centres at n x mean spontaneous potential). Bars have been
placed at ±2 sac. of the 'coefficient of variation'. Full hne shows theoretical relation for
Poisson-distributions.

constants chosen in calculating the curve had been determined independently.
The main discrepancies vanish if the mean size of the unit response is taken to
be 7% larger than the mean spontaneous potential, a difference which is
probably within limits of experimental error.

In other experiments the e.p.p. amplitudes were grouped more coarsely into
classes of unit-width, and a X2 test was applied; also, the coefficient of variation
of e.p.p. amplitudes (grouped in such unit classes) was determined and com-
pared with the expected coefficients mqn05 (Fig. 8). These tests were less
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accurate than the preceding analysis, but the results agreed with the view
that the responding units are distributed in Poisson-fashion provided the
quantum content of the e.p.p. is small (< 3). When the tests were extended to
larger e.p.p.'s (m exceeding 10), there was a consistent discrepancy, the
observed fluctuation of e.p.p. amplitudes covering a smaller range than
expected (see Figs. 8 and 9).

DISCUSSION

The most interesting evidence is that shown in Table 1 and Fig. 6 for small
values of m. The agreement between the two determinations of mn can hardly
be fortuitous and supports the view that the spontaneous miniature potential
is the least 'quantum of action' at the nerve-muscle junction, the e.p.p. being
built up statistically of such quanta. Furthermore, one may conclude that at
this reduced level of m, the statistical chances of any one unit responding to
a single impulse are very low, and in successive records the responses represent
different members of a large, mostly inactive, population.

It is tempting to speculate what the precise probability of the unit response
may be. For this, it is not sufficient to know only the value of mn; we also
require information of the total number of available units n. Moreover, it
does not follow from the results that all units have the same chance of
responding; a Poisson distribution would be obtained even from a non-uniform
population, provided only the probabilities of responding are small and
constant for each individual member (Kendall, 1948). If the whole synaptic
population consisted of, say, 500 units, and m is unity, then the average
chance of any unit responding to one impulse would be 1/500, but individual
probabilities may be considerably higher for some and much smaller for many
other members of the population.
What happens under more normal conditions when we raise the Ca and

lower the Mg concentration? The value of m becomes large and the statistical
analysis unsatisfactory. It is clear, however, that the response fluctuates much
less than predicted from our equations (Fig. 9). Now suppose the size of the
population n remains constant, then the increase of m would be due to an
increased probability p. If the population is uniform, the distribution of
responses would change from a Poisson to a binomial form. Associated with
this one may expect a reduction in statistical spread, for the coefficient of
variation for a Poisson series is 4(1/m), while that of a binomial distribution

is only J(k--). Closer examination, however, shows that this argument is

insufficient to account for the observed divergences. We can set a lower limit
to the value of n: the normal e.p.p. is about 100 times larger than a miniature
potential and must be composed of an even greater number of units because
unit increments of the e.p.p. would diminish at high levels of depolarization
(cf. Fatt & Katz, 1951). There is also reason to believe that the normal e.p.p.
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does not involve the whole population, so that n = 200 is a conservative
estimate. With m = 32, the coefficient of variation would be V( 1 - -1 ) = 0162,
compared with 0-177 in a Poisson distribution (when rn/n is very small). The
observed coefficient, however, is about 011 + 0-005, and a significant dis-
crepancy of this kind remained for all experiments in which m was greater
than 10.

There are two other factors which are more likely to provide an expla-
nation. One factor has already been mentioned, viz. a failure of linear sum-
mation of miniature potentials, when mn becomes large and the amplitude of
the total e.p.p. an appreciable fraction of the resting potential. Application

-V U,E0 a,

~o.o
~40-0

35- Response

CO 30 Spontaneous

100 25

80 20 ..

60 15/

40 10 /I

20 5

0 01
0 10 20 30

mV
Fig. 9. Histogram from an experiment with large e.p.p. Nominal value ofm (using equation (1))

is 32. Dotted curve: expected distribution of e.p.p.'s (modified Gaussian curve allowing for
scattered unit size: mean= 20-4 mV), a= 3-7 mV. Note large discrepancy between observed
and expected distribution.

of equation (1) and of the superposition theorem may lead to serious error if
the e.p.p. response exceeds a small fraction (5 %) of the resting potential.
Suppose each 'transmitter unit' produces a fixed leakage conductance AG
across the end-plate membrane, then the increment of potential AP which it
contributes to the e.p.p. becomes less the greater the existing leakage and the
lower the membrane potential (cf. Fatt & Katz, 1951). This must have an
important effect on the observed coefficient of variation, because (a) the actual
number n would be greater than that calculated from equation (1), and (b) the
scale of the amplitude fluctuations would be reduced in proportion to AP.
We have made only a rough estimate of this effect, but it seems that it may
account for a large part, if not the whole, of the observed discrepancy.
The other factor which may be involved is that different members of the

population may not have the same chances of success, and that for large
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values of m some individual units have a high probability and respond almost
every time, while others have a low probability and contribute to the e.p.p.
only occasionally. The presence of some units which respond regularly is
bound to diminish the statistical fluctuation of the e.p.p. In general, the
coefficient of variation for this case is less than that expected for a binomial
distribution (see Table 2).

TABLE 2. Coefficients of variation for different distributions

(From Kendall, 1948; the coefficient of variation is expressed here as a simple fraction, instead
of per cent.)

Poisson (p.c: 1)- Binomial (var p =0) 'Non-uniform population'

A/(m) y(1n n), n

n =total number of units available at a single junction.
m=mean number of units responding to one impulse.
p =m/n =average probability of response (per unit per impulse).
var p =variance of individual probabilities (p being assumed to vary among responding units,

but not during successive impulses).

This last factor should not be confused with the case in which probabilities of response vary
during the set of observations, e.g. if the value of m suffered a progressive change. In this case
the standard deviation of the e.p.p. amplitude would become greater, not less. A small effect of
this kind was present in some experiments and could be checked by dividing the observations into
groups. The drift of the mean value, however, was not large enough to affect the result seriously.

CONCLUSIONS

The following picture emerges from the present study: transmission at a nerve-
muscle junction takes place in all-or-none 'quanta' whose sizes are indicated
by the spontaneously occurring miniature discharges. The number of quantal
units responding to a nerve impulse fluctuates in a random manner and can
be predicted only in statistical terms. The average 'quantum content' of the
e.p.p. depends on the probability of response of the individual units, and this
varies with the external Ca and Mg concentration (for a more detailed hypo-
thesis, see Castillo & Katz, 1954). It is possible that some synaptic units
respond more readily than others, but with a sufficiently high Mg and low Ca
level the chances of excitation of all units are so small that a Poisson distri-
bution is obtained.
Under more normal conditions, the e.p.p. is large and the statistical

fluctuation small. While the evidence for the quantal composition of low-
level e.p.p.'s (m < 5) seems conclusive, inferences about the normal behaviour
are indire9t and can only be made by extrapolating into a range in which.the
present statistical analysis can give no useful information. There are, however,
good reasons for supposing that the normal e.p.p. is built up of a large number
of units of the same kind as described here, furthermore that even the normal
e.p.p. involves only a fractiQn of the total synaptic population, the average
probability of response apparently being less than unity. This suggestion is
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based on the finding that the size of the e.p.p. can be increased from nil to
well above the 'normal-Ringer' amplitude by raising the Ca concentration,
without increasing the size of the spontaneous miniature e.p.p. (Fatt & Katz,
1952 a, b; Castillo & Stark, 1952). If one accepts the present results as showing
that the miniature e.p.p. is the basic unit of response, then the effect of Ca
must be to raise the quantum content m of the e.p.p., either by increasing the
size of the population n or its probability of responding p. We have assumed
in our argument that a change of probability, rather than population size, is
involved, though the formal distinction between these two modes of action is
not very profitable until more is known about the nature of the molecular
reaction whose probability we are considering.

SUMMARY

1. The relation between response and spontaneous activity at a single
nerve-muscle junction has been studied.

2. By increasing Mg and lowering Ca concentration, the amplitude of the
e.p.p. can be reduced to that of a spontaneous 'miniature potential'. At the
same time, a large random fluctuation of successive e.p.p. amplitudes is
observed.

3. Statistical analysis indicates that the e.p.p. is built up of small all-or-
none quanta which are identical in size and shape with the spontaneously
occurring miniature potentials.

4. When the average 'quantum content' (m) of the e.p.p. is small (m < 3),
its amplitude fluctuates in a manner predictable by Poisson's law. At higher
levels (i > 10), deviations occur which may be due to a reduction in the 'unit-
increment' of the e.p.p., or to variation in the probability of response among
different synaptic units.

5. The statistical behaviour of the normal nerve-muscle junction and the
influence of Ca and Mg ions are discussed.

We are indebted to Mr J. L. Parkinson for his unfailing assistance. This work was supported
by a research grant made by the Nuffield Foundation.
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